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1 Introduction

Considerable research effort has been directed toward the development of efficient and
reliable quadrilateral plate finite elements. Quadrilateral elements are particularly at-
tractive for the discretization of plates of arbitrary geometric shapes.

Most studies have been focused on the Reissner-Mindlin theory, in which transverse
shear strains are accounted for. This circumvents difficulties associated with C1 require-
ments of the classical Poisson-Kirchhoff theory. However, standard low-order Reissner-
Mindlin-type elements suffer from shear locking when applied to thin plates. An early
remedy to this was the reduced/selective integration technique [12, 11]. Unfortunately,
this leads to rank deficiency and, for certain boundary conditions, to zero energy modes
in excess of the three physical rigid body modes. Many research efforts have been under-
taken to develop Reissner-Mindlin plate elements which have correct rank and maintain
accuracy in both thin and thick plate applications, see e.g. [13, 14, 4, 2, 3, 7, 6, 9].

Recently, based on the so-called twist-Kirchhoff theory, which conceptually lies “in
between” the classical Reissner-Mindlin and Poisson-Kirchhoff theories, a new family of
rectangular plate elements has been proposed for the analysis of thin plates [8]. A salient
feature of the formulation is that the mixed formulation of the lowest-order element
for the limit thin-plate problem is exactly integrated with one-point Gauss quadrature.
The element has no rank deficiency, and consequently does not require the stabilization of
“hourglass” or any other singular modes. An “equivalent” primal element, eliminating the
transverse shear force Lagrange multipliers, can be implemented by the penalty method.
One-point Gauss quadrature of the primal element attains the same attributes and, in the
thin plate limit, it converges to the mixed element. Consequently, one-point quadrature
is also viewed as exact in this case. This element attains a combination of stability
and efficiency never before achieved by a one-point quadrature quadrilateral element.
Consequently, we anticipate that, when generalized to the shell setting, it may offer
significant potential for economical and robust explicit crash dynamics and sheet metal
forming applications. The next highest-order element shares similar properties. Its full
integration rule is 2 × 2 Gauss quadrature. Likewise, all higher-order elements in the
family behave similarly.

The unique mathematical aspect of these formulations is the use of Raviart-Thomas
vector-field approximations for the rotations. We employ a Piola transformation to de-
fine the rotations in physical space for the arbitrary quadrilateral configuration. This
preserves the continuity of normal rotations across element interfaces. We generalize the
theory to account for the Piola transformation and show how to invoke the twist-Kirchhoff
hypothesis in the arbitrary quadrilateral configuration. Based on this, we implement and
numerically study the convergence behavior of the first two elements of the family in
distorted configurations.

It is well known that the approximation properties of H(div)-conforming Raviart-
Thomas elements deteriorate with mesh distortion [1]. In fact, there exist sequences of
meshes for which the lowest-order Raviart-Thomas discretizations of the mixed Laplacian
do not converge with respect to the H(div)-norm. This problem is alleviated through
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the utilization of higher-order Raviart-Thomas elements, albeit at the cost of a power
of h. This being said, the approximation properties of lowest-order Raviart-Thomas el-
ements remain optimal for regular families of asymptotically parallelogram meshes [5].
Furthermore, it is manifestly apparent that the lowest-order quadrilateral element may
not be degenerated to a triangle in the twist-Kirchhoff theory, since in that case the
transverse displacement field becomes linear in each element and the twist component
of curvature, which is calculated as the mixed second-derivative of the transverse dis-
placement, is therefore identically zero. Nevertheless, we investigate the behavior of
the twist-Kirchhoff elements on highly distorted configurations, including ones in which
quadrilaterals are degenerated to triangles. Indeed, for the lowest-order element, mo-
ments in degenerated triangles do not converge to correct values. However, in all other
cases, the lowest-order element behaves well. The second-order element behaves well in
all cases, including the case of degenerated triangles.

Square plate problems are discretized with asymptotically parallelogram-shape-regular
meshes and we observe the same optimal rates of convergence for all quantities consid-
ered as observed for rectangular elements in our previous work. Convergence is also
noted for the rhombic, simply-supported plate problem, known as Morley’s problem,
whose solution possesses singularities at the obtuse vertices. For circular plates we stud-
ied discretizations in which singularities were introduced in the geometrical mappings of
elements. In every case, except for the aforementioned one, convergence was obtained
for all quantities considered, even at the singularities in the geometrical mapping.

2 Twist-Kirchhoff Plate Theory

Let Ω ⊂ R2 denote the mid-plane of a plate undergoing rotation θ = [θx θy]T and
transverse deflection w as a result of applied distributed transverse load q and prescribed
boundary rotation θ̄ and deflection w̄. Further, let ∂Ω = ΓN ∪ΓD denote the boundary of
Ω, with ΓN and ΓD the Neumann and Dirichlet parts, respectively, such that ΓN ∩ΓD =
∅. The plate is assumed to be linear elastic, homogeneous and isotropic with Young’s
modulus E, Poisson’s ratio ν and constant thickness t.

Let us also introduce the kinematically admissible space U as

U = {(θ, w) ∈ H1(Ω)2 ×H1(Ω)| θ = θ̄ and w = w̄ on ΓD} (1)

In the classical Reissner-Mindlin formulation, the total potential energy of the plate
Πp : U → R is given as follows

Πp(θ, w) =

∫

Ω

1

2
κTDMκ+

1

2
γTDV γ dΩ−

∫

Ω

qw dΩ (2)

with κ and γ the curvature tensor and shear strain vector of the plate given by

κ =




κxx

κyy

κxy



 =




θx,x
θy,y

θx,y + θy,x



 and γ =

[
γx
γy

]
=

[
w,x − θx
w,y − θy

]
(3)
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and DM and DV the bending/twisting and shear constitutive matrices defined as

DM = D




1 ν 0
ν 1 0
0 0 1−ν

2



 and DV = kGt

[
1 0
0 1

]
(4)

where D = Et3/(12(1 − ν2)), G = E/(2(1 + ν)) and k is the shear correction factor,
usually taken to be 5/6.

The minimization of the total potential energy (2) leads to the equilibrium equations
of the Reissner-Mindlin plate model.

From a numerical point of view, the difficulty with this model is the matching of the
approximating spaces for θ and w. As t tends to zero, the shear strain vector γ must
tend to zero as well, i.e., the shear strains γx = w,x − θx and γy = w,y − θy must tend
to zero. If this is not allowed by the approximating spaces, the result is a deterioration
of the numerical solution, well known in the literature as shear locking. The situation is
particularly vexing if we wish to use low-order approximations.

On the other hand, finite elements based on the classical Kirchhoff theory of thin
plate bending require C1-continuity of the transverse displacement. However, whereas
C0 finite elements of various shapes and numbers of nodes are readily formulated, the
construction of multidimensional C1 elements has proven to be far more challenging.

Recently, a new theory, the twist-Kirchhoff theory, has been proposed for thin plates
[8]. This theory lies “in between” the classical Reissner-Mindlin and Poisson-Kirchhoff
theories. The main ingredient of this theory consists in replacing the Reissner-Mindlin
twist component of curvature, defined in terms of first-order derivatives of the rotation
components, with the classical Kirchhoff twist component of curvature, defined in terms
of the second-order cross derivative of the transverse displacement, while retaining the
definitions of the bending curvatures. In a rectangular Cartesian frame, this amounts to
setting

κ =




θx,x
θy,y
2w,xy



 (5)

Based on this theory, a new family of rectangular displacement/rotation-based plate
elements has been proposed for the analysis of thin plates [8]. This new family of elements
usesH(div)-conforming Raviart-Thomas vector fields of order r−1 for the rotation vector,
where r ≥ 1, standard C0-continuous piecewise bi-Lagrange functions of order r for the
transverse displacement, and an r× r-point Gaussian quadrature rule for the transverse
shear terms. This corresponds exactly to a mixed formulation in which the transverse
shear force resultants are assumed to be discontinuous piecewise bi-Lagrange functions of
order r − 1 over each element. This family of elements has been mathematically proven
to be stable, i.e., possessing no hourglass modes, and to be free from shear-locking.
Most notably, the lowest-order element of this family possesses only eight degrees-of-
freedom, four vertex transverse displacements and four mid-side rotations, allowing exact
evaluation of the stiffness matrix with one-point Gaussian quadrature.

4



We present in this paper the generalization of this theory to the arbitrary quadrilateral
element case. This requires special treatment of the Raviart-Thomas rotation field.

Toward this end, let us first consider a nondegenerate mapping from a reference square
K̂ = [−1, 1]×[−1, 1] to a physical domain of arbitrary quadrilateral shapeK as illustrated
in Figure 1, where φ : K̂ → K is a regular (orientation preserving) C1 mapping, and
(x, y) and (ξ, η) denote Cartesian and curvilinear coordinates, respectively.

x

y

η
η

ξ

ξ

φ

1

1−1

−1

K̂
K

Figure 1: Geometric mapping from the parent domain to the physical domain

Further, let θ̂ be a rotation vector field on K̂. The Piola transform of θ̂ is given by

θ =
1

J
F θ̂ (6)

where

θ =

[
θx
θy

]
, θ̂ =

[
θ̂ξ
θ̂η

]

(7)

F is the Jacobian matrix of φ defined by

F =

[
x,ξ x,η

y,ξ y,η

]
(8)

and J = x,ξy,η − x,ηy,ξ is its determinant. The Piola transformation preserves continuity
of the normal components of the rotation vector across mesh edges.

The transverse deflection is mapped using a standard push-forward with the relation-
ship

w = ŵ (9)
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Making use of these relations, the classical Kirchhoff assumptions, written in terms
of Cartesian quantities as

w,x − θx = 0 (10a)

w,y − θy = 0 (10b)

can be rewritten in terms of curvilinear quantities as

y,ηŵ,ξ − y,ξŵ,η − x,ξθ̂ξ − x,ηθ̂η =0 (11a)

−x,ηŵ,ξ + x,ξŵ,η − y,ξθ̂ξ − y,ηθ̂η =0 (11b)

where we have cleared the factor of J−1.
To derive the equations expressing the twist-Kirchhoff hypothesis, we first differentiate

both (11a) and (11b) with respect to ξ. We then multiply the ξ-derivative of (11a) by x,η,

and the ξ-derivative of (11b) by y,η, then we sum and solve for θ̂η,ξ. The result is (12a).
We proceed in analogous fashion to obtain (12b). We differentiate (11a) and (11b) with
respect to η, then we multiply the former result by x,ξ and the latter by y,ξ and sum,

and solve for θ̂ξ,η, resulting in (12b).

θ̂η,ξ = A0

(
ŵ,ξA1 + Jŵ,ηξ − θ̂ηA2 − θ̂ξ,ξA3 + ŵ,ηA4 − θ̂ξA5

)
(12a)

θ̂ξ,η = B0

(
ŵ,ηB1 + Jŵ,ξη − θ̂ξB2 − θ̂η,ηB3 + ŵ,ξB4 − θ̂ηB5

)
(12b)

where
A0 = 1/(x2

,η + y2,η)
A1 = x,ηy,ξη − y,ηx,ξη

A2 = x,ηx,ξη + y,ηy,ξη
A3 = x,ξx,η + y,ξy,η
A4 = y,ηx,ξξ − x,ηy,ξξ
A5 = x,ηx,ξξ + y,ηy,ξξ

and

B0 = 1/(x2
,ξ + y2,ξ)

B1 = y,ξx,ξη − x,ξy,ξη
B2 = x,ξx,ξη + y,ξy,ξη
B3 = x,ξx,η + y,ξy,η
B4 = x,ξy,ηη − y,ξx,ηη

B5 = x,ξx,ηη + y,ξy,ηη

(13)

Equations (12a) and (12b) represent the twist-Kirchhoff assumptions for the general
quadrilateral element defined in the curvilinear system (ξ, η). See Figure 1. Note that,
in the rectangular case, (12a) and (12b) simplify to

θ̂η,ξ = ŵ,ηξ (14a)

θ̂ξ,η = ŵ,ξη (14b)

Further, the derivatives of the Cartesian components of the rotation vector with
respect to the Cartesian coordinates can be expressed in terms of their corresponding
curvilinear components as follows

θx,x = J−2
(
(C1 −D1)y,η − (C2 −D2)y,ξ

)
(15a)

θy,y = J−2
(
(C4 −D4)x,ξ − (C3 −D3)x,η

)
(15b)

θx,y = J−2
(
(C2 −D2)x,ξ − (C1 −D1)x,η

)
(15c)

θy,x = J−2
(
(C3 −D3)y,η − (C4 −D4)y,ξ

)
(15d)
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with

C1 = x,ξ θ̂ξ,ξ + x,ηθ̂η,ξ
C2 = x,ξ θ̂ξ,η + x,ηθ̂η,η
C3 = y,ξθ̂ξ,ξ + y,ηθ̂η,ξ
C4 = y,ξθ̂ξ,η + y,ηθ̂η,η

and

D1 = J−1(A4 −B1)E1 − x,ξηθ̂η − x,ξξθ̂ξ
D2 = J−1(B4 −A1)E1 − x,ξηθ̂ξ − x,ηη θ̂η
D3 = J−1(A4 −B1)E2 − y,ξηθ̂η − y,ξξθ̂ξ
D4 = J−1(B4 −A1)E2 − y,ξηθ̂ξ − y,ηηθ̂η

(16)

where
E1 = x,ξ θ̂ξ + x,ηθ̂η
E2 = y,ξθ̂ξ + y,ηθ̂η

(17)

Finally, by invoking the twist-Kirchhoff assumptions (12a) and (12b), and substituting
them into (15a)-(15d), we obtain the components of the twist-Kirchhoff curvature vector
for the arbitrary quadrilateral element case as

κxx = J−2
(
(C1 −D1)y,η − (C2 −D2)y,ξ

)
(18a)

κyy = J−2
(
(C4 −D4)x,ξ − (C3 −D3)x,η

)
(18b)

κxy = J−2
(
(C2 −D2)x,ξ − (C1 −D1)x,η + (C3 −D3)y,η − (C4 −D4)y,ξ

)
(18c)

where the variables C1, C2, C3 and C4 are redefined as

C1 = x,ξ θ̂ξ,ξ + x,ηA0

(
ŵ,ξA1 + Jŵ,ηξ − θ̂ηA2 − θ̂ξ,ξA3 + ŵ,ηA4 − θ̂ξA5

)

C2 = x,ξB0

(
ŵ,ηB1 + Jŵ,ξη − θ̂ξB2 − θ̂η,ηB3 + ŵ,ξB4 − θ̂ηB5

)
+ x,ηθ̂η,η

C3 = y,ξθ̂ξ,ξ + y,ηA0

(
ŵ,ξA1 + Jŵ,ηξ − θ̂ηA2 − θ̂ξ,ξA3 + ŵ,ηA4 − θ̂ξA5

)

C4 = y,ξB0

(
ŵ,ηB1 + Jŵ,ξη − θ̂ξB2 − θ̂η,ηB3 + ŵ,ξB4 − θ̂ηB5

)
+ y,ηθ̂η,η

(19)

3 Finite Element Approximations

In the parent domain, the rotations are represented by H(div)-conforming Raviart-
Thomas vector fields of order r − 1, where r ≥ 1, and the transverse displacement is
represented by standard C0-continuous, piecewise bi-Lagrange functions of order r. Sim-
ilarly to the rectangular element case, numerical stability in the arbitrary quadrilateral
element case requires the use of an r × r-point Gaussian rule on the transverse shear
term. We note that, in the rectangular case, the r × r-point Gaussian rule is exact for
the bending term. The first two members of the family of elements, defined in the parent
domain, are schematically illustrated in Figure 2.

For the first- and second-order elements, i.e., for r = 1 and r = 2, the rotation
components and the transverse displacement fields in the parametric coordinates are
expressed as

θ̂hξ =
2∑

i=1

N̂
θξ
i θξi

θ̂hη =
2∑

i=1

N̂ θη
i θηi

ŵh =
4∑

i=1

N̂w
i wi

and

θ̂hξ =
6∑

i=1

N̂
θξ
i θξi

θ̂hη =
6∑

i=1

N̂ θη
i θηi

ŵh =
9∑

i=1

Nw
i wi

(20)
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(a) r = 1

1
1

1

2

2

2

3

3

3

4

4

4

5
5

5

6

6

6

7 8 9

(b) r = 2

Figure 2: First two members of the element family

• wh degree of freedom

‖ θhξ degree of freedom

‖ θhη degree of freedom

× Quadrature points
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respectively, where θξi and θηi represent mid-side rotational degrees-of-freedom about the
η- and ξ-constant coordinate lines, respectively, whereas wi represent vertex displace-
ment degrees-of-freedom, as illustrated in Figure 2. Note that, in the physical domain,
the rotational degrees-of-freedom become the normal components of the rotation on the
element boundaries.

In the first-order element, the shape functions for the rotations and transverse dis-
placement defined in parametric coordinates are

N̂
θξ
1 = 1

2
(1− ξ)

N̂
θξ
2 = 1

2
(1 + ξ)

N̂ θη
1 = 1

2
(1− η)

N̂ θη
2 = 1

2
(1 + η)

N̂w
1 = 1

4
(1− ξ)(1− η)

N̂w
2 = 1

4
(1 + ξ)(1− η)

N̂w
3 = 1

4
(1− ξ)(1 + η)

N̂w
4 = 1

4
(1 + ξ)(1 + η)

(21)

whereas in the second-order element they are

N̂
θξ
1 = 1

4
ξ(ξ − 1)(1− η)

N̂
θξ
2 = 1

2
(1− ξ2)(1− η)

N̂
θξ
3 = 1

4
ξ(ξ + 1)(1− η)

N̂
θξ
4 = 1

4
ξ(ξ − 1)(1 + η)

N̂
θξ
5 = 1

2
(1− ξ2)(1 + η)

N̂
θξ
6 = 1

4
ξ(ξ + 1)(1 + η)

N̂ θη
1 = 1

4
η(1− ξ)(η − 1)

N̂θη
2 = 1

2
(1− ξ)(1− η2)

N̂θη
3 = 1

4
η(1− ξ)(η + 1)

N̂θη
4 = 1

4
η(1 + ξ)(η − 1)

N̂θη
5 = 1

2
(1 + ξ)(1− η2)

N̂ θη
6 = 1

4
η(1 + ξ)(η + 1)

N̂w
1 = 1

4
ξη(1− ξ)(1− η)

N̂w
2 = −1

2
η(1− η)(1− ξ2)

N̂w
3 = −1

4
ξη(1 + ξ)(1− η)

N̂w
4 = −1

2
ξ(1− ξ)(1− η2)

N̂w
5 = (1− ξ2)(1− η2)

N̂w
6 = 1

2
ξ(1 + ξ)(1− η2)

N̂w
7 = −1

4
ξη(1− ξ)(1 + η)

N̂w
8 = 1

2
η(1 + η)(1− ξ2)

N̂w
9 = 1

4
ξη(1 + ξ)(1 + η)

(22)

4 Numerical Results

We use the primal formulation with a reduced quadrature rule; see [8] for further details.
For the first-order element we use a one-point Gaussian quadrature rule, whereas for
the second-order element we use a 2× 2-point tensor-product Gaussian quadrature rule.
To analyze the effectiveness of the elements, we computed solutions for the first- and
second-order cases for thicknesses of 0.01, 0.001, and 0.0001. For all computations,
a shear correction factor of 5/6 is utilized to achieve results that are consistent with
classical bending theory [10]. All the examples refer to isotropic plates with Young’s
modulus and Poisson’s ratio taken as E = 107 and ν = 0.3. A uniform distributed load of
magnitude q = 1 is applied in all cases. The specification of essential boundary conditions
is identical to that of Poisson-Kirchhoff theory, i.e., for simply-supported edges we only
impose w = 0, for clamped edges we impose w = 0 and θn = 0. The geometrical map of
the element utilizes the same basis functions as those for the transverse displacement.
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The energy errors presented are computed with the bending strain energy norm,
defined as

||κ|| =

(
1

2

∫

Ω

κTDMκ dΩ

) 1

2

(23)

As proven in [8], for the first-order rectangular element we have second-order conver-
gence for w in L2(Ω), first-order convergence for w in H1(Ω), and first-order convergence
for ||κ||, while for the second-order rectangular element we have third-order convergence
for w in L2(Ω), second-order convergence for w in H1(Ω), and second-order convergence
for ||κ||. As will be shown next, there is no degradation of these orders of convergence
when using asymptotically parallelogram-shape-regular meshes, i.e., meshes whose el-
ements converge to parallelograms in the limit of mesh refinement and whose element
aspect ratios are uniformly bounded from above and below.

4.1 Square Plate

We consider an isotropic square plate subject to uniform loading. The simply-supported
case is presented in Section 4.1.1 and the fully-clamped case is analyzed in Section 4.1.2.

The adopted refinement scheme consists of “uniform” refinements of a non-uniform
mesh obtained by splitting the square into four quadrilaterals, as illustrated in Figure 3,
where Dp represents the distortion parameter. In the present case, Dp was set to 1/10.
Each refinement step is obtained by subdividing each quadrilateral into four elements
by connecting the midpoints of the opposite edges. This leads to a family of nel × nel

asymptotically parallelogram-shape-regular meshes as shown in Figure 4 for the first
three meshes.

x

y

L

L

δ = DpL

δ = DpL

Figure 3: First mesh for square plate problem - distortion parameter
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(a) nel = 2 (b) nel = 4 (c) nel = 8

Figure 4: Asymptotically parallelogram meshes for square plate problem

4.1.1 Simply-Supported Case

Let us consider the simply-supported square plate illustrated in Figure 5.

x

y

L

L

E = 107

ν = 0.3

k = 5/6

L = 1

t = 0.01, 0.001, 0.0001

q = 1

Figure 5: Simply-supported square plate model

We first study convergence rates. Since there is no known analytical solution to the
twist-Kirchhoff problem, we compare discrete solutions with a heavily refined (128× 128
mesh) solution with the second-order element. We use this to determine rates of con-
vergence in integral norms. That we are converging to the exact solution will be verified
by tabular results presented subsequently. We present the global error as measured by
the bending strain energy norm obtained for the thickness case t = 0.001 in Figure 6.
Similarly, we present the displacement errors as measured by the L2 and H1 norms in
Figures 7(a) and 7(b), respectively. The plotted errors are normalized by the norms of
the reference solution. Examining these figures, we observe rates of convergence for both
the first- and the second-order element cases which are the same as the optimal rates of
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Figure 6: The normalized total error produced by the lowest- and second-order plate
elements for the simply-supported square plate under a uniform load for a thickness
value of 0.001.

convergence for the rectangular element case.
We now study the convergence of the center displacement. Tables 1 and 2 display

the convergence of the center displacement for the first- and second-order plate elements
respectively. The displayed center displacements are scaled by 103D/ (qL4). Comparing
our converged twist-Kirchhoff results with the reference Poisson-Kirchhoff solution [20],
we find the twist-Kirchhoff center displacement converges to the thin plate displacement
from above as the thickness/width ratio t/L → 0, as we might have anticipated. To
compare our twist-Kirchhoff results with Reissner-Mindlin theory, we have simulated a
simply-supported Reissner-Mindlin plate using 256×256 quadratic Lagrange rectangular
elements and selective reduced integration [11]. Table 3 displays the computed center dis-
placements, which we have confirmed are converged to five significant digits. We find the
converged twist-Kirchhoff displacements from Tables 1 and 2 lie below the corresponding
Reissner-Mindlin displacements for a fixed thickness/length ratio t/L. This result also
seems consistent with the “in between” nature of the twist-Kichhoff theory.

We next study the convergence of the center bending moment about the x-axis. Since
the discrete center bending moment is not well-defined, we sample it at a quadrature point
lying closest to the center of the plate. Tables 4 and 5 display the convergence of the center
moments for the first- and second-order plate elements, respectively. The displayed center
moments are scaled by 102/ (qL2). As expected, the convergence rate for the bending
moment is slower than that for the center displacement. This is significantly influenced
by the fact that the location at which we sample the bending moment within an element
is O(h), where h ≈ 1/nel, and thus we would have no reason to expect convergence to
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Figure 7: (a) The normalized L2 norm of the displacement produced by the lowest- and
second-order plate elements for the simply-supported square plate under a uniform load
for a thickness value of 0.001. (b) The normalized H1 norm of the displacement for the
same problem.
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Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 3.86286 3.86128 3.86126
4× 4 4.08572 4.08479 4.08479
8× 8 4.07035 4.06952 4.06951
16× 16 4.06500 4.06416 4.06415
32× 32 4.06366 4.06281 4.06280
64× 64 4.06332 4.06247 4.06247

Table 1: Center displacement (w×103D/(qL4)) for first-order element simply-supported
square plate solutions for the three thickness/length ratios. Reference thin plate limit
solution is 4.06235 [20].

Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 4.20035 4.19957 4.19956
4× 4 4.07131 4.07050 4.07049
8× 8 4.06369 4.06286 4.06285
16× 16 4.06323 4.06239 4.06238
32× 32 4.06321 4.06236 4.06235
64× 64 4.06321 4.06236 4.06235

Table 2: Center displacement (w × 103D/(qL4)) for second-order element simply-
supported square plate solutions for the three thickness/length ratios. Reference thin
plate limit solution is 4.06235 [20].

t/L = 0.01 t/L = 0.001 t/L = 0.0001

4.09930 4.06585 4.06268

Table 3: Center displacement (w × 103D/(qL4)) for simply-supported Reissner-Mindlin
plate. Computed using 256× 256 quadratic Lagrange rectangular elements and selective
reduced integration [11].
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Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 1.88468 1.88516 1.88517
4× 4 4.17328 4.17385 4.17385
8× 8 4.64061 4.64103 4.64104
16× 16 4.75203 4.75238 4.75238
32× 32 4.77916 4.77969 4.77968
64× 64 4.78584 4.78643 4.78641

Table 4: “Center” bending moment about the x-axis (Mx × 102/(qL2)) for first-order
element simply-supported square plate solutions for the three thickness/length ratios.
Reference thin plate limit solution is 4.78864 [20].

Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 4.52602 4.52648 4.52649
4× 4 4.68831 4.68874 4.68875
8× 8 4.76160 4.76167 4.76167
16× 16 4.78166 4.78171 4.78170
32× 32 4.78646 4.78694 4.78688
64× 64 4.78765 4.78823 4.78820

Table 5: “Center” bending moment about the x-axis (Mx × 102/(qL2)) for second-order
element simply-supported square plate solutions for the three thickness/length ratios.
Reference thin plate limit solution is 4.78864 [20].

be any better than first-order. However, we observe second-order convergence for both
elements, with the absolute values of the error being more accurate for the second-order
element.

4.1.2 Fully-Clamped Case

Let us now consider the case of a fully-clamped square plate, as illustrated in Figure 8.
In Figure 9 we present the global error as measured by the bending strain energy

norm. Similarly, we present the displacement errors as measured by the L2 and H1

norms in Figures 10(a) and 10(b), respectively. The plotted errors are normalized by the
norms of the exact solution. As in the simply-supported plate problem, we observe no
degradation of the optimal rates of convergence for the rectangular element case.

Tables 6 and 7 display the convergence of the center displacement for the first- and
second-order plate elements, respectively. As can be seen, the twist-Kirchhoff center dis-
placement converges to the thin plate displacement from above as the thickness/length
ratio t/L → 0. To compare our twist-Kirchhoff results with Reissner-Mindlin theory, we
simulated a clamped Reissner-Mindlin plate using 256 × 256 quadratic Lagrange rect-
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Figure 8: Fully-clamped square plate model

Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 0.00343 0.00003 0.00000
4× 4 1.21557 1.21318 1.21316
8× 8 1.26333 1.26139 1.26137
16× 16 1.26653 1.26471 1.26469
32× 32 1.26700 1.26520 1.26518
64× 64 1.26710 1.26530 1.26529

Table 6: Center displacement (w × 103D/(qL4)) for first-order element fully-clamped
square plate solutions for the three thickness/length ratios. Reference thin plate limit
solution is 1.26532 [19].

angular elements and selective reduced integration [11]. Table 8 displays the computed
center displacements, which we have confirmed are converged to six significant digits.
As was the case for the simply-supported plate, we find the converged twist-Kirchhoff
displacements lie below the corresponding Reissner-Mindlin displacements for a fixed
thickness/length ratio t/L. This result again seems consistent with the “in between”
nature of the twist-Kichhoff theory.

We next study the convergence of the center bending moment about the x-axis. As
was done for the simply-supported case, we sample the discrete bending moment at
a quadrature point lying closest to the center of the plate. Tables 9 and 10 display
the convergence of the center moment for the first- and second-order plate elements,
respectively. The displayed center moments are scaled by 102/ (qL2). We note that the
bending moment exhibits second-order convergence for both the first- and second-order
case, but with the second-order case being more accurate on an absolute basis.

16



100 101 10210−4

10−3

10−2

10−1

100

 

 

q=1
q=2

1

1

2

1

Fully-Clamped Plate, t = 0.001

E
n
er
gy

E
rr
or

Elements/Side

Figure 9: The normalized total error produced by the lowest- and second-order plate
elements for the fully-clamped isotropic plate under a uniform load for a thickness value
of 0.001.

Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 1.50167 1.49994 1.49992
4× 4 1.27850 1.27664 1.27662
8× 8 1.26785 1.26603 1.26601
16× 16 1.26718 1.26538 1.26536
32× 32 1.26714 1.26534 1.26532
64× 64 1.26714 1.26534 1.26532

Table 7: Center displacement (w × 103D/(qL4)) for second-order element fully-clamped
square plate solutions for the three thickness/length ratios. Reference thin plate limit
solution is 1.26532 [19].

t/L = 0.01 t/L = 0.001 t/L = 0.0001

1.26787 1.26534 1.26532

Table 8: Center displacement (w × 103D/(qL4)) for clamped Reissner-Mindlin plate.
Computed using 256×256 quadratic Lagrange rectangular elements and selective reduced
integration [11].
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Figure 10: (a) The normalized L2 norm of the displacement produced by the lowest- and
second-order plate elements for the fully-clamped isotropic plate under a uniform load
for a thickness value of 0.001. (b) The normalized H1 norm of the displacement for the
same problem.
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Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 -0.00019 0.00000 0.00000
4× 4 2.05023 2.05186 2.05188
8× 8 2.22775 2.23134 2.23138
16× 16 2.27135 2.27615 2.27630
32× 32 2.28529 2.28656 2.28701
64× 64 2.28903 2.28928 2.28962

Table 9: “Center” bending moment about the x-axis (Mx×102/(qL2)) for first-order ele-
ment fully-clamped square plate solutions for the three thickness/length ratios. Reference
thin plate limit solution is 2.29051 [19].

Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 1.96176 1.96023 1.96022
4× 4 2.16743 2.16461 2.16458
8× 8 2.26193 2.25608 2.25595
16× 16 2.28422 2.28206 2.28161
32× 32 2.28879 2.28881 2.28828
64× 64 2.28990 2.29013 2.29000

Table 10: “Center” bending moment about the x-axis (Mx × 102/(qL2)) for second-
order element fully-clamped square plate solutions for the three thickness/length ratios.
Reference thin plate limit solution is 2.29051 [19].

19



4.2 Simply-Supported Morley’s Plate

Let us now consider an isotropic simply-supported rhombic plate under uniform trans-
verse loading as illustrated in Figure 11. In this case, a singular behaviour is known to
occur at the obtuse vertices. As a result, we anticipate some difficulties may arise. In
fact, some thin plate elements yield pathological results for this problem [18]. An ana-
lytical solution given as an infinite series was obtained in [15] for the Poisson-Kirchhoff
case.
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L

E = 107

ν = 0.3

k = 5/6

L = 1

t = 0.01, 0.001, 0.0001

q = 1
30 ◦

Figure 11: Simply-supported Morley’s plate model

The adopted refinement scheme consists in uniform nel × nel parallelogram-shape-
regular meshes as shown in Figure 12 for the first three meshes.

We first study the convergence of the center displacement. Tables 11 and 12 display
the convergence of the center displacement for the first- and second-order plate elements,
respectively. Comparing our converged twist-Kirchhoff results with the reference Poisson-
Kirchhoff solution [15] evaluated retaining nine terms of the infinite series, we find the
twist-Kirchhoff center displacement converges to the thin plate displacement from above
as the thickness/length ratio t/L → 0.

We next study the convergence of the maximum and minimum principal center bend-
ing moments. We sample the discrete bending moment at a quadrature point lying closest
to the center of the plate. Tables 13 and 14 display the convergence of the center bend-
ing moments for the first- and second-order elements, respectively. The displayed center
moments are scaled by 102/ (qL2). We note that the bending moment converges slowly
for both the first- and second-order cases. The second-order discretization is slightly

(a) nel = 2 (b) nel = 4 (c) nel = 8

Figure 12: Parallelogram meshes for Morley’s plate problem
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Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 0.26392 0.26307 0.26306
4× 4 0.43539 0.43473 0.43472
8× 8 0.43717 0.43675 0.43674
16× 16 0.42091 0.41935 0.41933
32× 32 0.41810 0.41325 0.41307
64× 64 0.41794 0.41177 0.41066
128× 128 0.41790 0.41170 0.40958

Table 11: Center displacement (w× 103D/(qL4)) for first-order element simply-suported
Morley’s plate solutions for the three thickness/length ratios. Reference thin plate limit
solution evaluated retaining nine terms in the series is 0.40777 [15].

Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 0.50100 0.50035 0.50034
4× 4 0.44586 0.44545 0.44544
8× 8 0.42174 0.42064 0.42063
16× 16 0.41799 0.41379 0.41367
32× 32 0.41790 0.41182 0.41098
64× 64 0.41789 0.41169 0.40972
128× 128 0.41789 0.41169 0.40939

Table 12: Center displacement (w × 103D/(qL4)) for second-order element simply-
supported Morley’s plate solutions for the three thickness/length ratios. Reference thin
plate limit solution evaluated retaining nine terms in the series is 0.40777 [15].

more accurate in absolute terms. These low rates of convergence can be attributed to
the singularities at the obtuse corners, and the fact that the meshes are uniform and not
graded to better represent the singular behavior.

4.3 Circular Plate

Let us now consider an isotropic circular plate under uniform transverse loading. As in
the square plate problem, we analyze both the simply-supported and the fully-clamped
cases; see Sections 4.3.1 and 4.3.2, respectively.

Two different mesh refinement schemes are adopted in this case. One is based on a
sequence of polar meshes (PM), whereas the other is based on a sequence of meshes ob-
tained by mapping a square domain onto a circle (SCM). We note that for the PM-meshes,
we can interpret the triangular elements around the center as degenerate quadrilaterals
with one edge collapsed. Hence, from the computational point of view, for the coinci-
dent nodes, the associated degrees-of-freedom were made equivalent, while the rotational
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t/L = 0.01 t/L = 0.001 t/L = 0.0001

Mesh Mmax Mmin Mmax Mmin Mmax Mmin

2× 2 0.80932 0.19377 0.80935 0.19410 0.80935 0.19410
4× 4 1.67762 0.47686 1.67774 0.47685 1.67774 0.47685
8× 8 1.93080 0.76694 1.93162 0.76060 1.93163 0.76054
16× 16 1.94468 0.97043 1.95618 0.90315 1.95637 0.90218
32× 32 1.93018 1.10883 1.94570 0.97020 1.94832 0.95879
64× 64 1.93288 1.11883 1.92356 1.06029 1.93762 0.99155
128× 128 1.93374 1.12036 1.91706 1.09950 1.92559 1.02745

Table 13: Maximum and minimum principal “center” bending moments (M×102/(qL2))
for first-order element simply-supported Morley’s plate solutions for the three thick-
ness/length ratios. Reference thin plate limit solutions evaluated retaining nine terms in
the series are 1.9080 and 1.0834 [15].

(a) nel = 2 (b) nel = 4 (c) nel = 8

Figure 13: PM meshes with bi-linear mapping for circular plate problem

degrees-of-freedom associated with collapsed edges were removed from the system, i.e.,
set to zero. We are particularly interested in the effect of degenerating the elements on
local derivative quantities, especially the bending moments.

For the PM-meshes we exploit symmetry conditions and only discretize the first quad-
rant of the plate, whereas for the SCM-meshes we discretize the whole domain, see Figures
13 and 14, respectively. nel represents in this case the adopted number of elements per
side in one quadrant of the plate. For the meshes with second-order elements we use
a geometrical bi-quadratic mapping, in which initially straight edges in the reference
domain are mapped onto curved edges in the physical domain; see Figures 15 and 16.
As mentioned in Section 1, we have no illusions about the lowest-order twist-Kirchhoff
element being able to deal with polar meshes.
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(a) nel = 2 (b) nel = 4 (c) nel = 8

Figure 14: SCM meshes with bi-linear mapping for circular plate problem

(a) nel = 2 (b) nel = 4 (c) nel = 8

Figure 15: PM meshes with bi-quadratic mapping for circular plate problem

(a) nel = 2 (b) nel = 4 (c) nel = 8

Figure 16: SCM meshes with bi-quadratic mapping for circular plate problem
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t/L = 0.01 t/L = 0.001 t/L = 0.0001

Mesh Mmax Mmin Mmax Mmin Mmax Mmin

2× 2 2.00063 1.27113 2.00090 1.27079 2.00090 1.27079
4× 4 1.88260 1.40727 1.88092 1.41116 1.88090 1.41119
8× 8 1.88789 1.28405 1.87024 1.32483 1.87001 1.32534
16× 16 1.92966 1.13306 1.88602 1.24460 1.88357 1.25070
32× 32 1.93351 1.12083 1.90501 1.15871 1.88817 1.20602
64× 64 1.93390 1.12085 1.91713 1.10084 1.89412 1.16676
128× 128 1.93400 1.12086 1.91731 1.10010 1.90766 1.10805

Table 14: Maximum and minimum principal “center” bending moments (M×102/(qL2))
for second-order element simply-supported Morley’s plate solutions for the three thick-
ness/length ratios. Reference thin plate limit solutions evaluated retaining nine terms in
the series are 1.9080 and 1.0834 [15].

4.3.1 Simply-Supported Case

We consider a simply-supported circular plate of radius R = 1, as illustrated in Figure
17.

For the PM-meshes, the only essential boundary condition imposed on the curved
portion of the boundary is w = 0, while on the vertical and horizontal edges of the
quadrant boundary the only essential boundary condition imposed is θn = 0. For the
SCM-meshes, the essential boundary condition imposed on the whole boundary is w = 0.
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t = 0.01, 0.001, 0.0001

q = 1

Figure 17: Simply-supported circular plate model

We are particularly interested in studying the convergence of the central deflection,
central bending moment about the x-axis, and bending moment about the y-axis at
point (x, y) = (R, 0) of the boundary. The exact Poisson-Kirchhoff solutions for these
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t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 0.82936 0.81177 0.82923 0.81166 0.82923 0.81166
4× 4 0.94349 0.95153 0.94337 0.95143 0.94337 0.95143
8× 8 0.98339 0.98787 0.98327 0.98777 0.98327 0.98777
16× 16 0.99542 0.99704 0.99531 0.99694 0.99531 0.99694
32× 32 0.99882 0.99933 0.99871 0.99924 0.99871 0.99923
64× 64 0.99976 0.99991 0.99965 0.99981 0.99966 0.99981

Table 15: Center displacement (w × 64(1 + ν)D/((5 + ν)qR4)) for first-order element
simply-suported circular plate solutions for the three thickness/length ratios. Reference
thin plate limit solution is 1.0 [17].

t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 0.99441 0.99947 0.99423 0.99937 0.99422 0.99937
4× 4 0.99982 1.00006 0.99967 0.99996 0.99967 0.99995
8× 8 1.00010 1.00010 0.99998 1.00000 0.99998 1.00000
16× 16 1.00011 1.00010 1.00000 1.00000 0.99999 1.00000
32× 32 1.00011 1.00010 1.00000 1.00000 0.99992 1.00000
64× 64 1.00011 1.00010 1.00000 1.00000 0.99992 1.00000

Table 16: Center displacement (w × 64(1 + ν)D/((5 + ν)qR4)) for second-order element
simply-supported circular plate solutions with bi-quadratic mapping for the three thick-
ness/length ratios. Reference thin plate limit solution is 1.0 [17].

quantities are given by [17]:

w(0, 0) =

(
5 + ν

1 + ν

)
qR4

64D
(24a)

Mx(0, 0) = (3 + ν)
qR2

16
(24b)

My(R, 0) = (1− ν)
qR2

8
(24c)

The convergence of the normalized center deflection obtained with the first- and
second-order elements is displayed in Tables 15 and 16, respectively. Normalization is
taken with respect to the exact Poisson-Kirchhoff solution (24a).

We next study the convergence of the normalized center bending moment about the
x-axis. We sample the discrete bending moment at a quadrature point lying closest to
the center of the plate. Tables 17 and 18 display the convergence of the center bending
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t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 0.41008 0.75691 0.41008 0.75690 0.41008 0.75690
4× 4 0.34687 0.93594 0.34687 0.93594 0.34687 0.93594
8× 8 0.32177 0.98378 0.32177 0.98378 0.32177 0.98378
16× 16 0.31372 0.99593 0.31372 0.99593 0.31372 0.99593
32× 32 0.31129 0.99898 0.31129 0.99898 0.31129 0.99898
64× 64 0.31058 0.99974 0.31058 0.99975 0.31058 0.99974

Table 17: “Center” bending moment about the x-axis (Mx × 16/(qR2(3 + ν))) for first-
order element simply-supported plate solutions for the three thickness/length ratios. Ref-
erence thin plate limit solution is 1.0 [17].

moment obtained using the two refinement schemes for the first- and second-order plate
elements, respectively. The displayed center moments are scaled by the exact Poisson-
Kirchhoff solution, given in this case by (24b). We note that the bending moment
converges rapidly for the second-order discretization. However, for the polar mesh case,
the first-order element bending moments do not converge to the true solutions. This may
be attributed to the anticipated difficulties previously alluded to. To verify that this is
a problem attributed to the lowest-order Raviart-Thomas vector fields, we solved the
simply-supported circular plate problem with the standard selectively integrated bilinear
Reissner-Mindlin element and found that the moments did in fact converge. This issue
also occurs for the fully-clamped case; see the next section.

To conclude the analysis of the present example, we study the convergence of the
bending moment about the y-axis at point (x, y) = (R, 0) of the boundary. Tables 19
and 20 display the convergence of the bending moment obtained using the two refine-
ment schemes for the first- and second-order plate elements, respectively. The displayed
moments are scaled by (24c). Examining Table 19, we observe that, unlike the central
bending moments obtained with the polar discretization scheme, no convergence issues
seem to occur for the bending moment about the y-axis at point (x, y) = (R, 0) of the
boundary.

4.3.2 Fully-Clamped Case

Let us now consider the fully-clamped circular plate illustrated in Figure 18.
For the PM-meshes, essential boundary conditions w = θn = 0 are imposed on the

curved portion of the boundary, while on the vertical and horizontal edges of the quadrant
boundary the only essential boundary conditions imposed are θn = 0. For the SCM-
meshes, essential boundary conditions w = θn = 0 are imposed on the whole boundary.

We are interested in this case in the convergence of the central deflection, central
bending moment about the x-axis, and bending moment about the x-axis at point (x, y) =
(R, 0) of the clamped edge. The exact Poisson-Kirchhoff solutions for these quantities
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t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 0.88524 0.98033 0.88251 0.98033 0.88247 0.98033
4× 4 0.97411 0.99547 0.97026 0.99547 0.97011 0.99547
8× 8 0.99379 0.99889 0.99296 0.99889 0.99250 0.99889
16× 16 0.99845 0.99972 0.99843 0.99972 0.99814 0.99972
32× 32 0.99961 0.99993 0.99961 0.99993 0.99938 0.99993
64× 64 0.99990 0.99998 0.99990 0.99998 0.99970 0.99998

Table 18: “Center” bending moment about the x-axis (Mx×16/(qR2(3+ν))) for second-
order element simply-supported plate solutions with bi-quadratic mapping for the three
thickness/length ratios. Reference thin plate limit solution is 1.0 [17].

t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 1.20381 1.32128 1.20381 1.32136 1.20381 1.32136
4× 4 1.19732 1.27713 1.19732 1.27727 1.19732 1.27727
8× 8 1.13215 1.15872 1.13215 1.15890 1.13215 1.15890
16× 16 1.07526 1.08262 1.07526 1.08282 1.07526 1.08282
32× 32 1.04000 1.04179 1.04000 1.04200 1.04000 1.04200
64× 64 1.02060 1.02090 1.02060 1.02111 1.02061 1.02112

Table 19: Bending moment about the y-axis at point (x, y) = (R, 0) of the boundary
(My × 8/(qR2(1 − ν))) for first-order element simply-supported plate solutions for the
three thickness/length ratios. Reference thin plate limit solution is 1.0 [17].

t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 1.22662 1.28616 1.22619 1.28631 1.22618 1.28631
4× 4 1.13080 1.14230 1.13062 1.14247 1.13061 1.14247
8× 8 1.06880 1.07086 1.06879 1.07106 1.06878 1.07106
16× 16 1.03516 1.03540 1.03515 1.03561 1.03515 1.03562
32× 32 1.01775 1.01763 1.01775 1.01785 1.01769 1.01786
64× 64 1.00892 1.00872 1.00892 1.00894 1.00886 1.00894

Table 20: Bending moment about the y-axis at point (x, y) = (R, 0) of the boundary
(My × 8/(qR2(1 − ν))) for second-order element simply-supported plate solutions with
bi-quadratic mapping for the three thickness/length ratios. Reference thin plate limit
solution is 1.0 [17].
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Figure 18: Fully-Clamped circular plate model

t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 0.84116 0.64189 0.84064 0.64117 0.84064 0.64116
4× 4 0.94176 0.92727 0.94128 0.92682 0.94127 0.92682
8× 8 0.98123 0.98313 0.98077 0.98272 0.98076 0.98272
16× 16 0.99478 0.99615 0.99432 0.99575 0.99432 0.99574
32× 32 0.99884 0.99935 0.99839 0.99894 0.99839 0.99894
64× 64 1.00001 1.00014 0.99956 0.99974 0.99955 0.99973

Table 21: Center displacement (w × 64D/(qR4)) for first-order element fully-clamped
circular plate solutions for the three thickness/length ratios. Reference thin plate limit
solution is 1.0 [17].

are given by [17]:

w(0, 0) =
qR4

64D
(25a)

Mx(0, 0) = (1 + ν)
qR2

16
(25b)

Mx(R, 0) = −
qR2

8
(25c)

Normalizations are taken with respect to these quantities.
We first study the convergence of the center displacement. Tables 21 and 22 display

the convergence of the normalized center displacement for the first- and second-order plate
elements, respectively, obtained for the two refinement schemes with various meshes.

We next study the convergence of the normalized bending moment about the x-axis at
point (x, y) = (R, 0) of the clamped edge. We sample the discrete bending moment at a
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t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 0.98752 1.00406 0.98707 1.00366 0.98706 1.00365
4× 4 0.99984 1.00066 0.99939 1.00027 0.99938 1.00027
8× 8 1.00043 1.00042 0.99998 1.00002 0.99997 1.00002
16× 16 1.00046 1.00040 1.00000 1.00001 0.99999 1.00000
32× 32 1.00046 1.00040 1.00000 1.00000 0.99997 1.00000
64× 64 1.00046 1.00040 1.00000 1.00000 0.99995 1.00000

Table 22: Center displacement (w× 64D/(qR4)) for second-order element fully-clamped
circular plate solutions with bi-quadratic mapping for the three thickness/length ratios.
Reference thin plate limit solution is 1.0 [17].

t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 0.26160 0.22495 0.26160 0.22478 0.26160 0.22478
4× 4 0.59785 0.56414 0.59785 0.56398 0.59785 0.56397
8× 8 0.79476 0.78106 0.79476 0.78088 0.79476 0.78088
16× 16 0.89692 0.89274 0.89692 0.89255 0.89692 0.89255
32× 32 0.94842 0.94741 0.94842 0.94720 0.94842 0.94720
64× 64 0.97421 0.97410 0.97421 0.97389 0.97421 0.97389

Table 23: Bending moment about the x-axis at point (x, y) = (R, 0) of the clamped edge
(Mx × (−8)/(qR2)) for first-order element fully-clamped plate solutions for the three
thickness/length ratios. Reference thin plate limit solution is 1.0 [17].

quadrature point lying closest to (x, y) = (R, 0). Tables 23 and 24 display the convergence
of the normalized bending moment obtained using the two refinement schemes for the
first- and second-order plate elements, respectively. We note that the bending moment
is converging linearly for both the first- and second-order cases, with the second-order
case being the more accurate in absolute value.

We also study the convergence of the central bending moment about the x- axis.
The obtained moments are presented in Tables 25 and 26, for the first- and second-order
cases, respectively. We observe that, as in the simply-supported circular plate case with
the polar discretization scheme, the first-order approximate solutions do not converge to
the true solutions.

Finally, we study the convergence of the bending moment about the direction form-
ing 45 ◦ with the x-axis at point (x, y) = (R cos(π/4),−R sin(π/4)) of the clamped edge
obtained. We only use the SCM discretization scheme in this case. We note that point
(x, y) = (R cos(π/4),−R sin(π/4)) is a singular point of the SCM meshes. The obtained
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t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 0.65090 0.64522 0.65090 0.64509 0.65090 0.64509
4× 4 0.82572 0.82675 0.82572 0.82660 0.82572 0.82659
8× 8 0.91282 0.91369 0.91282 0.91352 0.91282 0.91351
16× 16 0.95641 0.95681 0.95641 0.95663 0.95641 0.95663
32× 32 0.97820 0.97846 0.97820 0.97827 0.97819 0.97826
64× 64 0.98910 0.98931 0.98910 0.98912 0.98908 0.98912

Table 24: Bending moment about the x-axis at point (x, y) = (R, 0) of the clamped
edge (Mx × (−8)/(qR2)) for second-order element fully-clamped plate solutions with
bi-quadratic mapping for the three thickness/length ratios. Reference thin plate limit
solution is 1.0 [17].

t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 0.45741 0.55125 0.45741 0.55101 0.45741 0.55101
4× 4 0.37522 0.89514 0.37522 0.89510 0.37522 0.89510
8× 8 0.33227 0.97446 0.33227 0.97446 0.33227 0.97446
16× 16 0.31720 0.99366 0.31720 0.99366 0.31720 0.99366
32× 32 0.31237 0.99842 0.31237 0.99842 0.31237 0.99842
64× 64 0.31090 0.99960 0.31090 0.99960 0.31090 0.99960

Table 25: “Center” bending moment about the x-axis (Mx × (16)/(qR2(1 + ν))) for
first-order element fully-clamped plate solutions for the three thickness/length ratios.
Reference thin plate limit solution is 1.0 [17].

t/R = 0.01 t/R = 0.001 t/R = 0.0001

Mesh PM SCM PM SCM PM SCM

2× 2 0.75681 0.95270 0.75682 0.95270 0.75682 0.95270
4× 4 0.93747 0.98871 0.93747 0.98871 0.93747 0.98871
8× 8 0.98426 0.99720 0.98426 0.99720 0.98426 0.99720
16× 16 0.99606 0.99930 0.99606 0.99930 0.99605 0.99930
32× 32 0.99901 0.99982 0.99901 0.99983 0.99892 0.99983
64× 64 0.99975 0.99995 0.99975 0.99996 0.99960 0.99996

Table 26: “Center” bending moment about the x-axis (Mx × (16)/(qR2(1 + ν))) for
second-order element fully-clamped plate solutions with bi-quadratic mapping for the
three thickness/length ratios. Reference thin plate limit solution is 1.0 [17].
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Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 0.65992 0.66015 0.66015
4× 4 0.91912 0.91945 0.91945
8× 8 0.97554 0.97590 0.97591
16× 16 0.99264 0.99308 0.99309
32× 32 0.99798 0.99814 0.99814
64× 64 1.00015 0.99954 0.99952

Table 27: Bending moment about the direction oriented 45 ◦ with respect to the x-axis
at point (x, y) = (R cos(π/4),−R sin(π/4)) of the clamped edge (Mx × (−8)/(qR2)) for
first-order element fully-clamped plate solutions with SCM meshes for the three thick-
ness/length ratios. Reference thin plate limit solution is 1.0 [17].

Mesh t/L = 0.01 t/L = 0.001 t/L = 0.0001

2× 2 0.95362 0.95391 0.95391
4× 4 0.97798 0.97837 0.97838
8× 8 0.99430 0.99458 0.99458
16× 16 1.00004 0.99875 0.99873
32× 32 1.00163 0.99982 0.99970
64× 64 1.00180 1.00023 0.99993

Table 28: Bending moment about the direction oriented 45 ◦ with respect to the x-axis
at point (x, y) = (R cos(π/4),−R sin(π/4)) of the clamped edge (Mx × (−8)/(qR2)) for
second-order element fully-clamped plate solutions with SCM meshes and bi-quadratic
mapping for the three thickness/length ratios. Reference thin plate limit solution is 1.0
[17].

moments are displayed in Tables 27 and 28, for the first- and second-order cases, re-
spectively. As it can be seen, the solutions are very accurate for both the first- and
second-order cases.

5 Conclusions

We have generalized the twist-Kirchhoff formulation of rectangular plate elements to
arbitrary quadrilateral elements. The key aspect of this generalization is the use of Piola
transformed Raviart-Thomas rotation fields. This ensures that the normal components
of rotation are continuous across element edges.

We have implemented the first two members of the twist-Kirchhoff family of elements
and studied convergence and accuracy for non-rectangular element discretizations. Prob-
lems studied included linearly elastic square and circular simply-supported and clamped
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plates, and a simply-supported rhombic plate problem solved analytically by Morley [15].
In the square and rhombic plate problems we employed asymptotically parallelogram-

shape-regular meshes, and satisfactory convergence of all quantities considered was real-
ized.

In the case of circular plates, we studied polar meshes, in which the quadrilateral
elements are degenerated to triangles at the center of the plate creating a singularity in
the geometric mapping, and meshes in which a square is mapped to a circle, for which
there are four singular points in the geometrical mapping on the boundary of the plate.
We were particularly curious about the behavior of the bending moments at the singular
points. For the second-order element, all quantities, including the bending moments at
the singularities, converged nicely for all meshes. For the first-order elements, all quanti-
ties converged nicely except for the bending moments at the singularity at the center of
the plate where the quadrilateral elements were degenerated into triangles. We argued
on theoretical grounds why the first-order element cannot be degenerated into a triangle
and our numerical results for the polar meshes support this conclusion. A convergent
triangular element with exactly the same vertex displacement and mid-edge normal ro-
tation degrees-of-freedom is the famous Morley triangle [16], which can be recommended
as an alternative to degenerating the lowest-order twist-Kirchhoff quadrilateral.

Aside from this one admonition to avoid degenerating the lowest-order elements to
triangles, we find the overall accuracy of the elements satisfactory for considering their use
for solving practical plate problems. The main attribute of these elements is their unique
combination of efficiency and robustness, that is, they require only r×r Gauss quadrature,
where r is the order of the elements, to produce stable elements with no hourglass or
other singular modes. We believe this attribute is an important and potentially deciding
one in explicit dynamic analysis for which solution times and storage requirements scale
with the number of quadrature points.
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